The streamline-diffusion method for a convection–diffusion problem with a point source
نویسندگان
چکیده
منابع مشابه
A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملThe streamline diffusion method with implicit integration for the multi-dimensional Fermi Pencil Beam equation
We derive error estimates in the appropriate norms, for the streamlinediffusion (SD) finite element methods for steady state, energy dependent,Fermi equation in three space dimensions. These estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.High order SD method together with implicit integration are used. The formulationis strongly consistent...
متن کاملOptimal results for a time-fractional inverse diffusion problem under the Hölder type source condition
In the present paper we consider a time-fractional inverse diffusion problem, where data is given at $x=1$ and the solution is required in the interval $0
متن کاملAn Optimal Streamline Diffusion Finite Element Method for a Singularly Perturbed Problem
The stability and accuracy of a streamline diffusion finite element method (SDFEM) on arbitrary grids applied to a linear 1-d singularly perturbed problem are studied in this paper. With a special choice of the stabilization quadratic bubble function, the SDFEM is shown to have an optimal second order in the sense that ‖u − uh‖∞ ≤ C infvh∈V h ‖u − vh‖∞, where uh is the SDFEM approximation of th...
متن کاملa posteriori $ l^2(l^2)$-error estimates with the new version of streamline diffusion method for the wave equation
in this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. we prove a posteriori $ l^2(l^2)$ and error estimates for this method under minimal regularity hypothesis. test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2003
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(02)00568-x